[1] Stephane Doncieux. Apprendre aux robots à faire face à l'imprévu. Industries et Technologies, 1045, 2021. Cahier Technique. [ bib ]
[2] Antonin Raffin, Bastian Deutschmann, and Freek Stulp. Fault-tolerant six-dof pose estimation for tendon-driven continuum mechanisms. Frontiers in Robotics and AI, 8:11, 2021. [ bib | http ]
[3] Achkan Salehi, Alexandre Coninx, and Stephane Doncieux. BR-NS: An Archive-Less Approach to Novelty Search, page 172–179. Association for Computing Machinery, New York, NY, USA, 2021. [ bib | http ]
[4] Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning. In Conference on Robot Learning, 2021. [ bib ]
[5] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22(268):1--8, 2021. [ bib | .html ]
[6] Astrid Merckling, Nicolas Perrin-Gilbert, Alex Coninx, and Stéphane Doncieux. Exploratory state representation learning. Frontiers in Robotics and AI, 9, 2022. [ bib ]
[7] Achkan Salehi, Alexandre Coninx, and Stephane Doncieux. Few-shot quality-diversity optimization. IEEE Robotics and Automation Letters, pages 1--10, 2022. [ bib ]
[8] Bas Van der Heijden, Antonin Raffin, and Jens Kober. Tools for robotic reinforcement learning. Workshop held in conjunction with the International Conference on Robotics and Automation (ICRA), 2022. [ bib ]
[9] Freek Stulp, Michael Spranger, Kim Listman, Stéphane Doncieux, Moritz Tenorth, George Konidaris, and Pieter Abbeel. Innovation paths for machine learning in robotics. IEEE Robotics & Automation Magazine, 29(4):141--144, 2022. [ bib ]
[10] Abhishek Padalkar, Gabriel Quere, Franz Steinmetz, Antonin Raffin, Matthias Nieuwenhuisen, Joao Silverio, and Freek Stulp. Reinforcement learning guided by shared control templates. In International Conference on Robotics and Automation (ICRA), 2023. [ bib ]
[11] Antonin Raffin, Daniel Seidel, Jens Kober, Alin Albu-Schäffer, João Silvério, and Freek Stulp. Learning to exploit elastic actuators for quadruped locomotion, 2022. [ bib | DOI | http ]
[12] Achkan Salehi, Steffen Rühl, and Stephane Doncieux. Adaptive asynchronous control using meta-learned neural ordinary differential equations, 2022. https://arxiv.org/abs/2207.12062. [ bib ]
[13] Steffen Rühl, Moritz Tenorth, Achkan Salehi, and Stéphane Doncieux. Transferring AI research results into an industrial product, 2023. https://insights.magazino.eu/en/whitepaper/ai-research. [ bib ]

This file was generated by bibtex2html 1.99.



To unsubscribe from the veridream-pi list, click the following link:
http://mlserv.intra.dlr.de/cgi-bin/wa?TICKET=NzM4NjIyIGNocmlzdGluZS5sZWVAR09PREFJLkNPTSBWRVJJRFJFQU0tUEkgIFSLBGh0uMuj&c=SIGNOFF